

4

Aquifer Exemption Boundary

Objective:

- Demonstrate that no existing domestic well that is currently used for human consumption is using water from the AE Area
- Demonstrate that no existing domestic well could produce water from the AE Area for the entire mine life
- Approach: Use accepted EPA capture zone methods and site data to delineate capture zones

Capture Zone Time Frame

- We will perform calculations of capture for the 8 year mine life provided in the issued permit.
- This is consistent with:
 - 40 CFR 146.6
 - Region 6 EPA's response to UEC's Application received on May 27, 2011

Capture Zone Approach

- 1. Tabulate the rural domestic wells to be considered in the AOR and detail what strata each is completed in, where known.
- 2. Calculate average hydraulic gradients in each stratum
- Calculate the 8 year capture zones for each rural domestic well and plot relative to the AE Boundary

8 year Capture Zone

•

Variables / Nomenclature

```
Q = Extraction rate at rural/domestic well (L3/T)
K = Average hydraulic conductivity of stratum (L/T)
      Average thickness of stratum (L)
b =
      Average transmissivity (K * b) of stratum
(L2/T)
i =
      Average hydraulic gradient (L/L)
      Porosity of stratum (L3/L3)
Ф=
      Average seepage velocity (L/T)
V =
      Coordinate parallel to seepage velocity direction
X =
      Coordinate normal to seepage velocity direction
y =
```

Capture Model Properties

		Average Hydraulic Gradient	
Stratum	Average Thickness (ft)	Magnitude (ft/ft)	Direction (degrees)
Α	65	TBD	TBD
В	36	TBD	TBD
С	36	TBD	TBD
D	80	TBD	TBD

 We have good sand hydraulic properties from two large-scale pump tests and a calibrated flow model of the B-sand

Rural/Domestic Use

- 2009 Water use survey data (Kevin Kluge, TWDB)
- Based upon municipal use and population TWDB does not calculate a county gpd/capita for rural/domestic
- Goliad County = 119 gpd/person
 - State average = 150 gpd/person
- Average household in Goliad County is comprised of 2.6 people
 - http://www.goliadcc.org/index.php/re-location-info.html

Rural/Domestic Use

- 2.6 people x 119 gpd/person = 309.4 gpd
- \blacksquare 309.4 gpd = 0.215 gpm = 41.4 ft3/day

•

Calculation of the 8 year Capture Zone

4

Conservative Aspect of the Calculation

Y max = +/-Q/2TISteady-state Xo = - Q / 2 π T I Steady-state

Travel Time Calculation from X₁ to X₂

Travel Time from x_2 to $x_1 =$

$$\{vx_2 - Q/2\pi b\phi [ln (vx_2 + Q/2\pi b\phi)] / v^2 - \{vx_1 - Q/2\pi b\phi [ln (vx_1 + Q/2\pi b\phi)] / v^2 \}$$

Product to EPA

- Review all wells in the AOR and provide verification of where the wells are completed where we have data
- Develop reasonable estimates of:
 - Aquifer properties
 - Hydraulic gradients
 - Rural/domestic pumping rate

- Provide plots of the 8 year capture zones for each rural/domestic well in the AOR
 - If a well is known to be completed in a particular stratum, calculations for that well will be limited to that stratum
 - If completion of a well is unknown, the calculations will be performed assuming all four potential strata
- Technical memorandum documenting results

